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Resources

Jenkins et al. (under review), “Getting to zero: insights from recent literature on the electricity
decarbonization challenge,” Joule (under review). Download: http://bit.ly/DecarbReviewManuscript

Sepulveda, Jenkins et al. (2018), “The role of firm low-carbon resources in deep decarbonization of
power generation,” Joule (in press, online Sept 6). Download: http://bit.ly/FirmLowCarbon

de Sisternes, Jenkins & Botterud (2016), “The value of energy storage in decarbonizing the
electricity sector,” Applied Energy 175. Download: http://bit.ly/ValueOfStorage

Loftus et al. (2014), “A critical review of global decarbonization scenarios: what do they tell us about
feasibility?” WIREs: Climate Change 6(1). Download: http://bit.ly/GlobalDecarbReview

The Energy Initiative @ MIT podcast, “Firm low-carbon energy resources: Pathways for reducing
CO2 emissions in electricity,” August 30, 2018. Listen: http://bit.ly/MITEnergyPodcast



Getting to Zero

Global carbon intensity of energy
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Electricity: the Linchpin
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THE DENVER POST

Xcel Energy receives shockingly
low bids for Colorado electricity
from renewable sources

January 17, 2018

SCIENTIFIC
AMERICAN

The Price of Solar Is Declining to
Unprecedented Lows

Despite already low costs, the installed price of solar fell by 5 to 12 percent in 2015

August 27,2016

Forbes

Renewable energy will be
consistently cheaper than fossil
fuels by 2020, report claims

January 13, 2018

MIT
Technology
Review

Grid Batteries Are Poised to
Become Cheaper Than Natural-
Gas Plants in Minnesota

July 12,2017



Wind, Solar & Battery Costs Plummet
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Renewables are Keeping Pace...
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..but Nuclear and CCS are Falling Behind

Nuclear energy Carbon capture & storage
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The Post and Courier Ehe New Aok Times

Santee Cooper, SCE&G pull plug Westinghouse Files for
on roughly $25 billion nuclear Bankruptcy, in Blow to
plants in South Carolina Nuclear Power
July 31, 2017 March 29, 2017
greentech

Carbon Capture Suffers a Huge Setback
as Kemper Plant Suspends Work

June 29, 2017
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Levelized cost of electricity ($/MWh)
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The Mental Model

A race to beat fossil fuels on cost...
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A Flawed Model
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A Race Against Declining Value
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A Race Against Declining Value

CO, Emissions Rate Limit (g/kWh)
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Declining Value: Three Key Mechanisms

1. Declining “fuel-saving” value (energy substitution)
2. Decreasing “capacity value” (capacity substitution)

3. Increasing “over-generation” (energy that must be
stored or wasted when supply exceeds demand)

Additional factors: Increasing flexibility, ramping and
reserve requirements, thermal plant cycling costs,
transmission network costs
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An lllustrative Example
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Solar PV Demand response
(price responsive
curtailment)

Solar thermal

Wind energy “Fuel “Fast
saving” burst” Flexible demand
Run-of-river variable balancing (rescheduling)
hydro renewables resources
Solgr thermal Battery storage
with storage
Reservoir hydro “Firm” low- Long-duration
carbon resources storage
Ceothermal Biogas
Nuclear : Biomass
Gas or coal
“Flexible base” w/CCS “Firm cyclers”
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The GenX Model

Highly configurable

Detailed operating
constraints (unit
commitment, etc.)

Hourly resolution

Transmission losses &
reinforcements

Distribution losses,
reinforcements &
‘non-wires” alternatives

Distributed energy
resources & flexible
demand

Enhanced Decision
Support for a Changing
Electricity Landscape:

The GenX Configurable
Electricity Resource Capacity
Expansion Model

An MIT Energy Initiative Working Paper
Revision 1.0
November 27, 2017

Jesse D. Jenkins'”

Nestor A. Sepulveda’ ™

“These authors contributed equally to this work




GENX OBJECTIVE FUNCTION
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Experimental Design

Core: 19 technology scenarios; 2 distinct regions; 7 emissionss limits; with & without firm resources

Plus: demand flexibility, transmission interconnection and long duration storage sensitivities

Core Sensitivities

Wind, Solar, & Nuclear & Gas Bioenergy Region Demand Transmission Long Duration
Li-ion Cost w/CCS Cost Availability Flexibility* Interconnection* Storage*

29



Average cost of electricity ($/MWh)
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Data source: Sepulveda, N., Jenkins, J.D., et al. (2018), “The role of firm low-carbon resources in deep
decarbonization of electric power systems,” Joule (in press).
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Average cost of electricity ($/MWh)
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Data source: Sepulveda, N., Jenkins, J.D., et al. (2018), “The role of firm low-carbon resources in deep
decarbonization of electric power systems,” Joule (in press).
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In the near-term, wind, solar, batteries and
natural gas can drive emissions reductions.




Fully decarbonizing electricity requires
“firm” low-carbon substitutes for natural gas
and retiring nuclear units




Firm Low-Carbon Options

“Fuel “Fast
saving” burst”
variable balancing

renewables resources

) o’ “rs ” - “
Reservoir hydro Firm” low Firm storage?
carbon resources

Ceothermal Biogas

Nuclear Biomass
Gas or coal

w/CCS 27
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Carbon Capture and Storage
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Batteries are no substitute for firm
resources but rather play a distinct,
complementary role as “fast burst” resources




Can ultra-cheap, long-duration storage act as

a true substitute for firm generation?




Substantial Uncertainty Remains
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Not a Straight Line to Zero Carbon
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We Need Strategies Robust to Risk

continent-scale transmission
AND

highly flexible demand /
efficiency gains

AND

very low-cost wind, solar,
and batteries

AND

order-of-magnitude cheaper
“firm” storage

affordable nuclear
OR
affordable CCS
OR
sustainable biomass
OR
engineered geothermal
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We Need Strategies Robust to Risk
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We Need Strategies Robust to Risk
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Decarbonization
Uncertainty
« Full combinatorial analysis of much broader range
of uncertainties:

 Technology costs; changes in electricity demand
profiles (electrification, demand growth,
efficiency); weather; policy timing

* Large combinatorial “end-points” analysis to map
uncertainty space

 Narrower “pathways” analysis to identify inflection

points/decision points and possible dead-ends
48



Decarbonization
Uncertainty
1. Expert elicitation workshop to define “uncertainty
space”

2. Using parallel supercomputing cluster perform full
combinatorial analysis spanning 10s or 100s of
thousands of discrete cases

3. Data analysis techniques to generate actionable
Insights for managing deep uncertainty
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Decarbonization

Uncertainty

Insights:

« Stable regions - clustering sets of parameter values that result in
similar outcomes

« Knife edge changes - small changes in parameter values resulting
in large changes in optimal portfolio

 Regret - metric for each portfolio’s n-dimensional Euclidian distance
from the “optimal” portfolio for each realization of uncertainty

 Robustness — metric for each resource describing robustness to
parametric uncertainty

« Optionality - identifying substitute resources can expand option

space (“more Ors; less Ands”)
50



New Computational Methods

Multi-level decomposition of electricity panning problem

Year 1 DDP-based Multi-stage Decomposition

Investment Decisions Year n Year X
C Benders Decomposition) - - -

Co 710
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Operational Decisions

Time coupling constraints m

Lagrangian Dual Decomposition
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